The POPFULL research project started in Flanders (Belgium) is testing the potential of SRC plantations to sequester CO\textsubscript{2} from the atmosphere and investigate the emission/uptake of the most important GHG (H\textsubscript{2}O, CH\textsubscript{4}, N\textsubscript{2}O, O\textsubscript{3}) and their environmental controls.

We installed a meteorological and eddy flux tower in March-April 2010 and are currently measuring:

- Environmental variables (water table, soil moisture, soil and air temperature, solar and thermal radiation, diffuse radiation, soil heat flux, etc.)
- CO\textsubscript{2}, H\textsubscript{2}O, CH\textsubscript{4}, N\textsubscript{2}O, and O\textsubscript{3} fluxes from the plantation with eddy covariance

Within the framework of the POPFULL project we are also quantifying the complete energy balance and the full economic accounting in line with a full life cycle assessment.

In Fig. 2 are shown data from the first field season (2010) when an intense precipitation event (~80 mm rainfall in 48 hours) occurred after a prolonged fairly dry summer period.

This first extreme precipitation caused:

- peak N\textsubscript{2}O emissions (up to 2,200 µg N\textsubscript{2}O-N m-2 h-1)
- CO\textsubscript{2} (NEE) and CH\textsubscript{4} fluxes did not respond to any of these rain events

This was probably caused by the N availability to microorganisms that exceeded C availability at our site.

Fig. 1 Eddy covariance tower (left) in the experimental plantation in September 2010.

Fig. 2 Water table, N\textsubscript{2}O fluxes (µg N\textsubscript{2}O-N m-2 h-1), CO\textsubscript{2} fluxes (NEE, mg CO\textsubscript{2} m-2 s-1), and CH\textsubscript{4} fluxes (mg CH\textsubscript{4} m-2 s-1) in the plantation during part of the month of Jun-December 2010. Notice the increase in N\textsubscript{2}O emission after water table drop on the 19 to the 26 of August.

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013), ERC grant agreements nr. 233366 (POPFULL) and the Marie Curie Reintegration grants (PIRG07-GA-2010-268257). We thank all the PhD and post-doctoral students and that helped in the project, especially Laura, Mattea, Simone, and Stefano. We also thank Alessandro Zaldei, Piero Toscano, and Franco Miglietta for field assistance, and Beniamino Gioli for help with the eddy covariance data analysis and insight in the data processing.