Net Ecosystem Production and carbon balance of an SRC poplar plantation during its first rotation (POPFULL)∗

MS Verlinden1,2, LS Broeckx1, D Zona2, G Berhongaray1, T De Groote1,3, M Camino Serrano1, IA Janssens1, R Ceulemans1
1 University of Antwerp, Dept. of Biology, Research Group of Plant & Vegetation Ecology, B-2610 Wilrijk, Belgium
2 Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
3 Unit Environmental Modelling, VITO, Boeretang 200, B-2400 Mol, Belgium
* melanie.verlinden@uantwerpen.be

Objective
• To quantify the components of the carbon (C) balance of a poplar bio-energy plantation
• To quantify NPP and determine the sink-source status
• To compare the estimated NEE with NEE measured through eddy covariance techniques

Materials & Methods
• Large scale (18 ha) short rotation coppice plantation in Flanders (Belgium) with 12 poplar genotypes
• C pools and fluxes were quantified on an annual basis during the 2nd growth year of the 2-year establishment rotation
• Determination of biomass C pools: combination of sample harvesting, non-destructive sampling + allometric techniques and upsampling
• Determination of C fluxes: chamber measurements using IR-gas analysis techniques + temporal & spatial upsampling and modeling
• Net C balance calculation:
 1. Pool-change-based approach: NPP = NPP - Rnet = F + (Ste + Br) + Su + CR + FR – 0.6 · Rs
 2. Component-flux-based approach: NEE = GPP - Rmet = GPP – (Rs + RH + Rs)
 3. NEE assessment via eddy covariance techniques

Results

Boxes represent annual pool changes, and arrows represent annual integrated C fluxes for the second growing season (values in g C m⁻² y⁻¹). The green filled box (soil) represents the standing soil C pool before plantation establishment (in g C m⁻²). Averaged values are given with standard errors; gross photosynthesis was a modeled parameter, not including an error range.

A few minor missing C-pools and fluxes include:
- small CH₄ release fluxes (non-CO₂ losses) were observed
- volatile organic compound (VOC) emissions: estimated at 1-2% of GPP, corresponding to 13-25 g C m⁻² y⁻¹
- dissolved organic compound (DOC) losses to deeper soil layers: estimated at 4.7 g C m⁻² y⁻¹
- foliage C losses due to herbivory: maximum 1%
- understory (weed) vegetation was sparse [not quantified]

Components of C balance, using three different approaches. Uptake and storage displayed positive, release or loss displayed negative. Grey bars = pool changes; non-filled bars = integrated fluxes; hatched bar = eddy covariance assessment.
Stars show the C balance net result (in g C m⁻² y⁻¹) representing the NEE or NEE for the eddy covariance measurements:
- pool-change-based: 140.3
- component-flux-based: 199.2
- eddy covariance: 95.7

Conclusions
• Considering the size of the C balance constituting components and associated uncertainties, the three approaches give comparable results
• The efficient biomass production – with the highest part of the total C uptake allocated to the aboveground wood – led the poplars to close the carbon balance as the high respiratory soil C fluxes
 The ecosystem was a net carbon sink in the 2nd year of the first 2-year rotation

Acknowledgements
We gratefully acknowledge the excellent technical support of Jozu Coak, the logistic support of Allard Meulen of the field site, as well as the carbon and nitrogen analyses by Geert Swinnen and Ingrid Ortyl. Funding from the European Research Council under the European Commission’s Seventh Framework Programme (FP7/2007-2013) (ERC Grant Agreement 247153) and the Ecometabolite (EAP-2006-1) is gratefully acknowledged.